If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+54x+290=0
a = -16; b = 54; c = +290;
Δ = b2-4ac
Δ = 542-4·(-16)·290
Δ = 21476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21476}=\sqrt{4*5369}=\sqrt{4}*\sqrt{5369}=2\sqrt{5369}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{5369}}{2*-16}=\frac{-54-2\sqrt{5369}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{5369}}{2*-16}=\frac{-54+2\sqrt{5369}}{-32} $
| -10+8x=-14x+6+6 | | 8x-16-8x-16=9x+87 | | 15x2+4x=0 | | 8x-16+8x+16=9x+87 | | 6+6p=30 | | 2(4w-90=14 | | 8x+14=5x+12+2x+20 | | 1.03x-4=-2.15x+8.722 | | x+-8=4 | | 1.03x-4=-2.15x8.722 | | 9a-a+3a=11a | | .4w=4.2 | | -6(3x-9)=-18x+54 | | (5)^2=2(19.6)a | | (2x+4=27 | | 108=2x+6(4x-8) | | -5+-n3=-8 | | 4(2b-1)=4 | | 0.6+15b+4=25.6 | | 2v+-3v+16v-9v=-12 | | 5u+2u-5u-2u+4u=12 | | 6m-27=15 | | 9x+x-10x+2x+x=18 | | 4x+87+6=180 | | (9-4u)(5+u+8u^2)=0 | | -12=-4d | | z/19=4 | | 4(43.5+-0.25y)+y+6=180 | | 7(x+3)=7(2x+2) | | 7y+43=71 | | -(3)/(8)y=-24 | | 2x(-5+6x)+10x(8-5x)=0 |